Purpose: Measles vaccine is widely used in China to prevent the measles virus (MV) infection. People immunized with measles vaccine can obtain long-term protective immunity. Measles virus surface glycoprotein hemagglutinin (H) can also induce MV-specific immune responses. However, little is known about whether the existence of the protective immune system against MV in the host can exert anti-tumor effects and whether the MV-H gene can serve as a therapeutic gene.
Methods: We first vaccinated mice with measles vaccine, then inoculated them with MV-H protein-expressing tumor cells and observed the rate of tumor formation. We also treated mice with H protein-expressing tumor cells with measles vaccine and assessed tumor size and overall survival.
Results: Active vaccination using measles vaccine not only protected mice from developing tumors, but also eradicated established tumors. Measles vaccine elicited H-specific IFN-γ, TNF-α and granzyme B-producing CD8+ T cells and increased cytotoxic T lymphocyte (CTL) activity specific for H antigen, which provided a strong therapeutic benefit against H protein-expressing tumors. In addition, measles vaccine decreased the population of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs).
Conclusions: Our study demonstrated that tumor cells expressing H protein could activate the immune memory response against MV, which exerted specific anti-tumor effects, and indicated that the MV-H gene can be used as a potential therapeutic gene for cancer gene therapy.
Keywords: Cancer; Cancer immunotherapy; Cytotoxic T lymphocytes; Hemagglutinin; Measles vaccine.