CXCR3 expression in colorectal cancer cells enhanced invasion through preventing CXCR4 internalization

Exp Cell Res. 2018 Oct 1;371(1):162-174. doi: 10.1016/j.yexcr.2018.08.006. Epub 2018 Aug 7.

Abstract

One of the major causes of death in colorectal cancer (CRC) is invasion and metastasis. Better understanding of the molecular mechanism of CRC invasion and metastasis is essential in developing effective cancer therapies. Cooperative effect of CXCR3 and CXCR4 plays a crucial role in regulating CRC invasion. In present study, we discovered that CRC cells expressing higher levels of CXCR3 and CXCR4 were more invasive. Additionally, CXCR3 formed heteromers with CXCR4 and retained CXCR4 on cell surface. CXCR3 knockdown reduced surface CXCR4 expression and partially inhibited CRC cell invasion. On the contrary, CXCR3 overexpression enhanced surface CXCR4 abundance and promoted CRC cell invasion. Further research indicated that CXCR3-A isoform was responsible for increased CXCR4 surface expression and CRC cell invasion. However, CXCR3-A overexpression without CXCR4 expression did not cause CRC cell invasion, which suggested that CXCR3-A indirectly affect cell invasion through regulating CXCR4. Taken together, CXCR3 enhanced CXCR4 function in CRC cell invasion through forming heteromers with CXCR4 on cell surface and prevent CXCR4 internalization. Therefore, targeting CXCR3 could be a promising strategy for clinical treatment of CRC cell invasion and metastasis.

Keywords: CXCR3; CXCR4 internalization; Cancer invasion; Chemokine receptor interaction; Colorectal cancer cell.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Body Weight
  • Cell Line, Tumor
  • Cell Movement
  • Cell Proliferation
  • Clathrin / antagonists & inhibitors
  • Clathrin / genetics
  • Clathrin / metabolism
  • Colorectal Neoplasms / genetics*
  • Colorectal Neoplasms / metabolism
  • Colorectal Neoplasms / pathology
  • Female
  • Gene Expression Regulation, Neoplastic*
  • HCT116 Cells
  • Humans
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / secondary
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Neoplasm Invasiveness
  • Protein Binding
  • Protein Transport
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / metabolism
  • Receptors, CXCR3 / antagonists & inhibitors
  • Receptors, CXCR3 / genetics*
  • Receptors, CXCR3 / metabolism
  • Receptors, CXCR4 / genetics*
  • Receptors, CXCR4 / metabolism
  • Signal Transduction
  • Xenograft Model Antitumor Assays

Substances

  • CXCR3 protein, human
  • CXCR4 protein, human
  • Clathrin
  • RNA, Small Interfering
  • Receptors, CXCR3
  • Receptors, CXCR4