We report the first multiscale, systematic field-based testing of correlations between orbital scale advanced spaceborne thermal emission and reflection radiometer visible near-infrared (VNIR)/shortwave infrared (SWIR) reflectance and thermal infrared relative emissivity and outcrop scale Raman spectroscopy, VNIR reflectance, X-ray diffraction (XRD), and laser-induced breakdown spectroscopy (LIBS) mineralogy and chemistry in a saline dry lakebed. This article is one of three reports describing the evolution of salt deposits, meteorological record, and surface and subsurface salt mineralogy in Dalangtan, Qaidam Basin, a hyperarid region of the Tibet Plateau, China, as potential environmental, mineralogical, and biogeochemical analogs to Mars. We have successfully bridged remote sensing data to fine scale mineralogy and chemistry data. We have defined spectral end-members in the northwestern Qaidam Basin and classified areas within the study area on the basis of their spectral similarity to the spectral end-members. Results of VNIR/SWIR classification reveal zonation of spectral units within three large anticlinal domes in the study area that can be correlated between the three structures. Laboratory Raman, VNIR reflectance, XRD, and LIBS data of surface mineral samples collected along a traverse over Xiaoliangshan (XLS) indicate that the surface is dominated by gypsum, Mg sulfates, Na sulfates, halite, and carbonates, with minor concentrations of illite present in most samples as well. Our results can be used as a first step toward better characterizing the potential of orbital reflectance spectroscopy as a method for mineral detection and quantification in salt-rich planetary environments, with the benefit that this technique can be validated on the ground using instruments onboard rovers.
Keywords: Hyperarid; Mars; Multiscale mineralogical and geochemical survey; Remote sensing; Spectroscopy.