The formation of nontemplated (N) regions during Ig gene rearrangement is a major contributor to Ab diversity. To gain insights into the mechanisms behind this, we studied the nucleotide composition of N regions within 29,962 unique human VHDJH rearrangements and 8728 unique human DJH rearrangements containing exactly one identifiable D gene segment and thus two N regions, N1 and N2. We found a distinct decreasing content of cytosine (C) and increasing content of guanine (G) across each N region, suggesting that N regions are typically generated by concatenation of two 3' overhangs synthesized by addition of nucleoside triphosphates with a preference for dCTP. This challenges the general assumption that the terminal deoxynucleotidyl transferase favors dGTP in vivo. Furthermore, we found that the G and C gradients depended strongly on whether the germline gene segments were trimmed or not. Our data show that C-enriched N addition preferentially happens at trimmed 3' ends of VH, D, and JH gene segments, indicating a dependency of the transferase mechanism upon the nuclease mechanism.
Copyright © 2018 by The American Association of Immunologists, Inc.