Objective: Esophagus tissue engineering holds promises to overcome the limitations of the presently employed esophageal replacement procedures. This study investigated 5 animal models for esophageal submucosal glands (ESMG) to identify models appropriate for regenerative medicine applications. Furthermore, this study aimed to measure geometric parameters of ESMG that could be utilized for fabrication of ESMG-specific scaffolds for esophagus tissue engineering applications.
Methods: Ovine, avian, bovine, murine, and porcine esophagus were investigated using Hematoxylin-Eosin (HE), Periodic Acid Schiff (PAS), and Alcian Blue (AB), with AB applied in 3 pH levels (0.2, 1.0, and 2.5) to detect sulphated mucous. Celleye® (version F) was employed to gain parametric data on ESMGs (size, perimeter, distance to lumen, and acini concentration) necessary for scaffold fabrication.
Results: Murine, bovine, and ovine esophagus were devoid of ESMG. Avian esophagus demonstrated sulphated acid mucous producing ESMGs with a holocrine secretion pattern, whereas sulphated acid and neutral mucous producing ESMGs with a merocrine secretion pattern were observed in porcine esophagus. Distance of ESMGs to lumen ranged from 127-340 μm (avian) to 916-983 μm (porcine). ESMGs comprised 35% (avian) to 45% (porcine) area of the submucosa. ESMG had an area of 125000 μm2 (avian) to 580000 μm2 (porcine).
Conclusion: Avian and porcine esophagus possesses ESMGs. However, porcine esophagus correlates with data available on human ESMGs. Geometric and parametric data obtained from ESMG are valuable for the fabrication of ESMG-specific scaffolds for esophagus tissue engineering using the hybrid construct approach.
Keywords: Animal models; Esophagus; Scaffolds; Submucosal glands; Tissue engineering.