Microglia support neural stem cell maintenance and growth

Biochem Biophys Res Commun. 2018 Sep 10;503(3):1880-1884. doi: 10.1016/j.bbrc.2018.07.130. Epub 2018 Aug 8.

Abstract

Increasing evidence suggests that disease-associated microglia play a protective role in neurodegenerative diseases. Microglia are known to polarize into two reciprocate forms in response to external cues - inflammatory M1 state and anti-inflammatory M2 state. These cells perform key functions in the development of the brain, such as circuit refinement, neurogenesis, and neuronal growth. In this study, we analyzed the secretion effect of microglia on neural stem/progenitor cell (NSPC) proliferation and differentiation. We cultured adult mouse-derived NSPCs in a conditioned medium from BV2 immortalized microglia without growth factors and evaluated their differentiation. When cultivated with BV2-derived soluble factors in the presence of basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), NSPCs were able to maintain Nestin expression and showed increased proliferation compared with those cells cultivated with bFGF and EGF only. Moreover, conditioned media from M2-polarized primary microglia, stimulated by IL-10/IL-13, showed supportive effect on NSPC proliferation. These data suggest that microglia support neural stem cell proliferation through secreting neuro-nutritious soluble factors.

Keywords: Brain development; Central nervous system; Microglia; Neural stem/progenitor cell.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Differentiation
  • Cell Line
  • Cell Proliferation
  • Mice
  • Mice, Inbred C57BL
  • Microglia / metabolism*
  • Neural Stem Cells / cytology*
  • Neural Stem Cells / metabolism