The studies described in the Research Communication aimed to describe the feasibility of using coal fly ash to synthesize nano-zeolite, and the ammonium and phosphate adsorption efficiencies of the nanomaterial in dairy wastewater. Chemical treatment of coal fly ash was conducted and changes observed. Samples treated with NaOH had an increased cation exchange capacity and P sorption index compared to the initial fly ash, due to particle modification from smooth surface to plate- and rod-shape crystals, referred to as nano-zeolite. Batch experiments were conducted by mixing coal fly ash and nano-zeolite with synthesized wastewater to study the effect of sorption time, pH values and dosage of nano-zeolite on ammonium and phosphate removal efficiency. The adsorption process reached equilibrium in a very short time (less than 60 min), which suggests a potential for fast immobilization of pollutants. The concentration of ammonium decreased from 118 to 35 mg/l (71% removal) while the concentration of phosphate decreased from 52 to 45 mg/l. The removal efficiency of ammonium was 36·6, 51·8 and 70·9% at pH 3, 7 and 10, respectively whilst that of phosphate increased dramatically with decreased slurry pH (92·1, 47·3 and 12·3% at pH 3, 7 and 10, respectively). Nano-zeolite could be a potential absorbent for fast immobilization of ammonium but not phosphate. Surface modification of nano-zeolite could be introduced in order to enhance the pollutants removal efficiency.
Keywords: Nano-zeolite; ammonium and phosphate removal.