High-Content Screening Campaign to Identify Compounds That Inhibit or Disrupt Androgen Receptor-Transcriptional Intermediary Factor 2 Protein-Protein Interactions for the Treatment of Prostate Cancer

Assay Drug Dev Technol. 2018 Aug/Sep;16(6):297-319. doi: 10.1089/adt.2018.858. Epub 2018 Aug 15.

Abstract

Twenty percent of prostate cancer (PCa) patients develop a noncurable drug-resistant form of the disease termed castration-resistant prostate cancer (CRPC). Overexpression of Androgen Receptor (AR) coactivators such as transcriptional intermediary factor 2 (TIF2) is associated with poor CRPC patient outcomes. We describe the implementation of the AR-TIF2 protein-protein interaction biosensor (PPIB) assay in a high-content screening (HCS) campaign of 143,535 compounds. The assay performed robustly and reproducibly and enabled us to identify compounds that inhibited dihydrotestosterone (DHT)-induced AR-TIF2 protein-protein interaction (PPI) formation or disrupted preexisting AR-TIF2 PPIs. We used multiparameter HCS data z-scores to identify and deprioritize cytotoxic or autofluorescent outliers and confirmed the resulting qualified actives in triplicate. None of the confirmed AR-TIF2 PPIB inhibitors/disruptors exhibited activity in a p53-hDM2 PPIB counter screen, indicating that they were unlikely to be either nonselective PPI inhibitors or to interfere with the biosensor assay format. However, eight confirmed AR-TIF2 PPIB actives also inhibited the glucocorticoid receptor (GR) nuclear translocation counter screen by >50%. These compounds were deprioritized because they either lacked AR specificity/selectivity, or they inhibited a shared component of the AR and GR signaling pathways. Twenty-nine confirmed AR-TIF2 PPIB actives also inhibited the AR nuclear localization counter screen, suggesting that they might indirectly inhibit the AR-TIF2 PPIB assay rather than directly blocking/disrupting PPIs. A total of 62.2% of the confirmed actives inhibited the DHT-induced AR-TIF2 PPI formation in a concentration-dependent manner with IC50s < 40 μM, and 59.4% also disrupted preexisting AR-TIF2 PPI complexes. Overall, the hit rate for the AR-TIF2 PPIB HCS campaign was 0.12%, and most hits inhibited AR-TIF2 PPI formation and disrupted preexisting AR-TIF2 complexes with similar AR-red fluorescent protein distribution phenotypes. Further secondary and tertiary hit characterization assays are underway to select AR-TIF2 PPI inhibitor/disruptor hits suitable for medicinal chemistry lead optimization and development into novel PCa/CRPC therapeutics.

Keywords: androgen receptor; biosensor; high content imaging; protein-protein interactions; transcriptional intermediary factor 2.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Androgen Receptor Antagonists / chemistry
  • Androgen Receptor Antagonists / pharmacology*
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Drug Screening Assays, Antitumor
  • High-Throughput Screening Assays*
  • Humans
  • Male
  • Nuclear Receptor Coactivator 2 / antagonists & inhibitors*
  • Nuclear Receptor Coactivator 2 / metabolism
  • Prostatic Neoplasms / drug therapy*
  • Prostatic Neoplasms / metabolism
  • Prostatic Neoplasms / pathology
  • Protein Binding / drug effects
  • Receptors, Androgen / metabolism*
  • Tumor Cells, Cultured

Substances

  • Androgen Receptor Antagonists
  • Antineoplastic Agents
  • NCOA2 protein, human
  • Nuclear Receptor Coactivator 2
  • Receptors, Androgen