Background: Dendritic cells (DC) induce adaptive responses against foreign antigens, and play an essential role in maintaining peripheral tolerance to self-antigens. Therefore they are involved in preventing fatal autoimmunity. Selective delivery of antigens to immature DC via the endocytic DEC-205 receptor on their surface promotes antigen-specific T cell tolerance, both by recessive and dominant mechanisms. We provide evidence that the induction of antigen-specific T cell tolerance is not a unique property of CD11c+CD8+DEC-205+ DCs.
Methods: We employed a fusion between αDCIR2 antibodies and the highly encephalitogenic peptide 139-151 of myelin-derived proteolipid protein (PLP139-151), to target CD11c +CD8- DCs with a DEC-205-DCIR2+ phenotype in vivo, and to substantially improve clinical symptoms in the PLP139-151-induced model of experimental autoimmune encephalomyelitis (EAE).
Results: Consistent with previous studies targeting other cell surface receptors, EAE protection mediated by αDCIR2-PLP139-151 fusion antibody (Ab) depended on an immature state of targeted DCIR2+ DCs. The mechanism of αDCIR2-PLP139-151 mAb function included the deletion of IL-17- and IFN-γ-producing pathogenic T cells, as well as the enhancement of regulatory T (Treg) cell activity. In contrast to the effect of αDEC-205+ fusion antibodies, which involves extrathymic induction of a Foxp3+ Treg cell phenotype in naïve CD4+Foxp3- T cells, treatment of animals with DCIR2+ fusion antibodies resulted in antigen-specific activation and proliferative expansion of natural Foxp3+ Treg cells.
Conclusions: These results suggest that multiple mechanisms can lead to the expansion of the Treg population, depending on the DC subset and receptor targeted.
Keywords: DCIR2; Dendritic cells; Multiple sclerosis; PLP139–151; Regulatory T cells; T cells.