Increasing evidence indicates that human cytomegalovirus (HCMV) populations under the influence of host environment, can either be stable or rapidly differentiating, leading to tissue compartment colonization. We isolated previously from a 30-years old pregnant woman, a clinical isolate of HCMV, that we refered to as the HCMV-DB strain (accession number KT959235). The HCMV-DB clinical isolate demonstrated its ability to infect primary macrophages and to upregulate the proto-oncogene Bcl-3. We observed in this study that the genome of HCMV-DB strain is close to the genomes of other primary clinical isolates including the Toledo and the JP strains with the later having been isolated from a glandular tissue, the prostate. Using a phylogenetic analysis to compare the genes involved in virus entry, we observed that the HCMV-DB strain is close to the HCMV strain Merlin, the prototype HCMV strain. HCMV-DB infects human mammary epithelial cells (HMECs) which in turn display a ER-/PR-/HER2- phenotype, commonly refered to as triple negative. The transcriptome of HCMV-DB-infected HMECs presents the characteristics of a pro-oncogenic cellular environment with upregulated expression of numerous oncogenes, enhanced activation of pro-survival genes, and upregulated markers of cell proliferation, stemcellness and epithelial mesenchymal transition (EMT) that was confirmed by enhanced cellular proliferation and tumorsphere formation in vitro. Taken together our data indicate that some clinical isolates could be well adapted to the mammary tissue environment, as it is the case for the HCMV-DB strain. This could influence the viral fitness, ultimately leading to breast cancer development.