Molecular structure and function depend on myriad noncovalent interactions. However, the weak and transient nature of noncovalent interactions in solution makes them challenging to study. Information on weak interactions is typically derived from theory and indirect structural data. Solvent fluctuations, not revealed by structure analysis, further complicate the study of these interactions. Using 2D infrared spectroscopy, we show that the strong hydrogen bond and the weak n → π* interaction coexist and interconvert in aqueous solution. We found that the kinetics of these interconverting interactions becomes faster with increasing water content. This experimental observation provides a new perspective on the existence of weak noncovalent interactions in aqueous solution.