Adjuvant tamoxifen reduces the recurrence rate of estrogen receptor (ER)-positive breast cancer. Previous in vitro studies have suggested that tamoxifen can affect the cancerous inhibitor of protein phosphatase 2A (CIP2A)/protein phosphatase 2A (PP2A)/phosphorylation Akt (pAkt) signaling in ER-negative breast cancer cells. In addition to CIP2A, SET nuclear proto-oncogene (SET) oncoprotein is another intrinsic inhibitor of PP2A, participating in cancer progression. In the current study, we explored the clinical significance of SET, CIP2A, PP2A, and Akt in patients with ER-positive breast cancer receiving adjuvant tamoxifen. A total of 218 primary breast cancer patients receiving adjuvant tamoxifen with a median follow-up of 106 months were analyzed, of which 17 (7.8%) experienced recurrence or metastasis. In an immunohistochemical (IHC) stain, SET overexpression was independently associated with worse recurrence-free survival (RFS) (hazard ratio = 3.72, 95% confidence interval 1.26⁻10.94, p = 0.017). In silico analysis revealed mRNA expressions of SET, PPP2CA, and AKT1 significantly correlated with worse RFS. In vitro, SET overexpression reduced tamoxifen-induced antitumor effects and drove luciferase activity in an Estrogen receptor element (ERE)-dependent manner. In conclusion, SET is a prognostic biomarker in patients with primary ER-positive breast cancer receiving adjuvant tamoxifen and may contribute to the failure of the tamoxifen treatment by modulating the ER signaling. Our study warrants further investigation into the potential role of SET in ER-positive breast cancer.
Keywords: CIP2A; PP2A; SET; breast cancer; tamoxifen.