Organization and distribution of lipids in cellular membranes play an important role in a diverse range of biological processes, such as membrane trafficking and signaling. Here, we present the combined experimental and simulated results to elucidate the phase behavioral features of ganglioside monosialo 1 (GM1)-containing mixed monolayer of the lipids 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) and cholesterol (CHOL). Two monolayers having compositions DMPC-CHOL and GM1-DMPC-CHOL are investigated at air-water and air-solid interfaces using Langmuir-Blodgett experiments and scanning electron microscopy (SEM), respectively, to ascertain the phase behavior change of the monolayers. Surface pressure isotherms and SEM imaging of domain formation indicate that addition of GM1 to the monolayer at low surface pressure causes a fluidization of the system but once the system attains the surface pressure corresponding to its liquid-condensed phase, the monolayer becomes more ordered than the system devoid of GM1 and interacts among each other more cooperatively. Besides, the condensing effect of cholesterol on the DMPC monolayer was also verified by our experiments. Apart from these, the effects induced by GM1 on the phase behavior of the binary mixture of DMPC-CHOL were studied with and without applying liquid-expanded (LE)-liquid-condensed (LC) equilibrium surface pressure using molecular dynamics (MD) simulation. Our molecular dynamics (MD) simulation results give an atomistic-level explanation of our experimental findings and furnish a similar conclusion.