The advancement of scientific and medical research over the past years has generated a wealth of experimental data from multiple technologies, including genomics, transcriptomics, proteomics, and other forms of -omics data, which are available for a number of diseases. The integration of such multisource data is a key component toward the success of precision medicine. In this paper, we are investigating a multisource data integration method developed by our group, regarding its ability to drive to clusters of connected pathways under two different approaches: first, a disease-centric approach, where we integrate data around a disease, and second, a gene-centric approach, where we integrate data around a gene. We have used as a paradigm for the first approach Huntington's disease (HD), a disease with a plethora of available data, whereas for the second approach the GBA2, a gene that is related to spastic ataxia (SA), a phenotype with sparse availability of data. Our paper shows that valuable information at the level of disease-related pathway clusters can be obtained for both HD and SA. New pathways that classical pathway analysis methods were unable to reveal, emerged as necessary "connectors" to build connected pathway stories formed as pathway clusters. The capability to integrate multisource molecular data, concluding to something more than the sum of the existing information, empowers precision and personalized medicine approaches.