High-performance sensor achieved by hybrid guide-mode resonance/surface plasmon resonance platform

Appl Opt. 2018 Sep 1;57(25):7338-7343. doi: 10.1364/AO.57.007338.

Abstract

We perform a comprehensive analysis of multiband absorption properties in a metal-dielectric-metal-dielectric (MDMD) nanostructure under TM wave illumination. The multiband absorption can be attributed to the hybridization of the surface plasmon resonance (SPR) and the guide-mode resonance (GMR), and we identify the hybrid GMR/SPR by the dispersion relation equations of the SPR and GMR, respectively. More importantly, the MDMD nanostructure is very sensitive to the change of the dielectric environment for the special hybrid structure; thus, it can function as a good candidate for ultrasensitive biochemical sensing. The highest sensitivity of the MDMD nanostructure reaches 1087 nm/RIU with the figure of merit (FoM) of 23 and the new figure of merit (FoM*) of 483; it is performed by the absorption peak at 1796.1 nm of the double surface plasmon polariton with the strongest field enhancement at the surface.