Proposal: This paper investigates a novel screening tool for Obstructive Sleep Apnea Syndrome (OSAS), which aims at efficient population-wide monitoring. To this end, we introduce SASscore which provides better OSAS prediction specificity while maintaining a high sensitivity.
Methods: We process a cohort of 2595 patients from 4 sleep laboratories in Western Romania, by recording over 100 sleep, breathing, and anthropometric measurements per patient; using this data, we compare our SASscore with state of the art scores STOP-Bang and NoSAS through area under curve (AUC), sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). We also evaluate the performance of SASscore by considering different Apnea-Hypopnea Index (AHI) diagnosis cut-off points and show that custom refinements are possible by changing the score's threshold.
Results: SASscore takes decimal values within the interval (2, 7) and varies linearly with AHI; it is based on standardized measures for BMI, neck circumference, systolic blood pressure and Epworth score. By applying the STOP-Bang and NoSAS questionnaires, as well as the SASscore on the patient cohort, we respectively obtain the AUC values of 0.69 (95% CI 0.66-0.73, p < 0.001), 0.66 (95% CI 0.63-0.68, p < 0.001), and 0.73 (95% CI 0.71-0.75, p < 0.001), with sensitivities values of 0.968, 0.901, 0.829, and specificity values of 0.149, 0.294, 0.359, respectively. Additionally, we cross-validate our score with a second independent cohort of 231 patients confirming the high specificity and good sensitivity of our score. When raising SASscore's diagnosis cut-off point from 3 to 3.7, both sensitivity and specificity become roughly 0.6.
Conclusions: In comparison with the existing scores, SASscore is a more appropriate screening tool for monitoring large populations, due to its improved specificity. Our score can be tailored to increase either sensitivity or specificity, while balancing the AUC value.