In this paper we report the nucleotide sequence of the hisD gene of Escherichia coli and of the his IE region of both E. coli and Salmonella typhimurium. The hisD gene codes for a bifunctional enzyme, L-histidinol:NAD+ oxidoreductase, of 434 amino acids with a molecular mass of 46,199 daltons. We established that the hisIE region of both S. typhimurium and E. coli is composed of a single gene and not, as previously believed, of two separate genes. The derived amino acid sequence indicates that the hisIE gene codes for a bifunctional protein of 203 amino acids with an approximate molecular mass of 22,700 daltons. We also determined the nucleotide sequence of a deletion mutant in S. typhimurium which abolishes the hisF and hisI functions but retains the hisE function. We deduced that the mutant produces a chimeric protein fusing the aminoterminal region of the upstream hisF gene to the carboxyl-terminal domain of the hisIE gene which encodes for the hisE function. In view of these results the structural and functional organization of the histidine operon in enteric bacteria needs to be revised. The operon is composed of only 8 genes and the pathway leading to the biosynthesis of the amino acid requires 11 enzymatic steps.