BH3 mimetics induce apoptosis independent of DRP-1 in melanoma

Cell Death Dis. 2018 Sep 5;9(9):907. doi: 10.1038/s41419-018-0932-z.

Abstract

Despite the recent advancement in treating melanoma, options are still limited for patients without BRAF mutations or in relapse from current treatments. BH3 mimetics against members of the BCL-2 family have gained excitement with the recent success in hematological malignancies. However, single drug BH3 mimetic therapy in melanoma has limited effectiveness due to escape by the anti-apoptotic protein MCL-1 and/or survival of melanoma-initiating cells (MICs). We tested the efficacy of the BH3 mimetic combination of A-1210477 (an MCL-1 inhibitor) and ABT-263 (a BCL-2/BCL-XL/BCL-W inhibitor) in killing melanoma, especially MICs. We also sought to better define Dynamin-Related Protein 1 (DRP-1)'s role in melanoma; DRP-1 is known to interact with members of the BCL-2 family and is a possible therapeutic target for melanoma treatment. We used multiple assays (cell viability, apoptosis, bright field, immunoblot, and sphere formation), as well as the CRISPR/Cas9 genome-editing techniques. For clinical relevance, we employed patient samples of different mutation status, including some relapsed from current treatments such as anti-PD-1 immunotherapy. We found the BH3 mimetic combination kill both the MICs and non-MICs (bulk of melanoma) in all cell lines and patient samples irrespective of the mutation status or relapsed state (p < 0.05). Unexpectedly, the major pro-apoptotic proteins, NOXA and BIM, are not necessary for the combination-induced cell death. Furthermore, the combination impedes the activation of DRP-1, and inhibition of DRP-1 further enhances apoptosis (p < 0.05). DRP-1 effects in melanoma differ from those seen in other cancer cells. These results provide new insights into BCL-2 family's regulation of the apoptotic pathway in melanoma, and suggest that inhibiting the major anti-apoptotic proteins is sufficient to induce cell death even without involvement from major pro-apoptotic proteins. Importantly, our study also indicates that DRP-1 inhibition is a promising adjuvant for BH3 mimetics in melanoma treatment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / physiology*
  • Apoptosis Regulatory Proteins / metabolism
  • Cell Line, Tumor
  • Dynamins
  • GTP Phosphohydrolases / metabolism*
  • Humans
  • Melanoma / metabolism*
  • Melanoma / pathology*
  • Microtubule-Associated Proteins / metabolism*
  • Mitochondrial Proteins / metabolism*
  • Peptide Fragments / metabolism*
  • Proto-Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins c-bcl-2 / metabolism

Substances

  • Apoptosis Regulatory Proteins
  • Bax protein (53-86)
  • Microtubule-Associated Proteins
  • Mitochondrial Proteins
  • Peptide Fragments
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • GTP Phosphohydrolases
  • DNM1L protein, human
  • Dynamins