Acinetobacter nosocomialis is a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex. Increasingly, reports are emerging of the pathogenic profile and multidrug resistance (MDR) phenotype of this species. To define novel therapies to overcome resistance, we queried the role of the major efflux pumps in A. nosocomialis strain M2 on antimicrobial susceptibility profiles. A. nosocomialis strains with the following mutations were engineered by allelic replacement; ΔadeB, ΔadeJ, and ΔadeB/adeJ. In these isogenic strains, we show that the ΔadeJ mutation increased susceptibility to beta-lactams, beta-lactam/beta-lactamase inhibitors, chloramphenicol, monobactam, tigecycline, and trimethoprim. The ΔadeB mutation had a minor effect on resistance to certain beta-lactams, rifampicin and tigecycline. In addition, the ΔadeJ mutation resulted in a significant decrease in surface motility and a minor decrease in biofilm formation. Our results indicate that the efflux pump, AdeIJK, has additional roles outside of antibiotic resistance in A. nosocomialis.
Keywords: Acinetobacter; RND-efflux; antimicrobial resistance; biofilm; motility.