In this work, a novel kind of electrospun microfiber to deliver a photothermal agent and an anticancer drug to tumor sites is explored. Photothermal therapy agent (MoS2 nanosheets) and doxorubicin (DOX) are incorporated with poly(lactic-co-glycolic acid) (PLGA) microfiber via electrospinning a solution of PLGA, MoS2 , and DOX. The designed microfiber with uniform fibrous morphology and negligible in vitro/in vivo hemo-/histo-toxicity is used as a durable photothermal agent, which shows an excellent photothermal transform ability and acceptable photothermal stability in both the first and second near-infrared light (NIR I and II) biowindows. The synergistic in vivo tumor chemotherapy and photothermal therapy efficiency of the composite microfibers are studied in postoperative treatment of cancer. It is found that the tumor postoperative reoccurrence can be completely prohibited owing to the synergistic tumor therapy efficiency in both the NIR I and NIR II biowindows.
Keywords: chemotherapy; electrospinning; near-infrared light I and II; photothermal tumor therapy; poly(lactic-co-glycolic acid).
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.