Angiotensin-converting enzyme 2 deficiency accelerates and angiotensin 1-7 restores age-related muscle weakness in mice

J Cachexia Sarcopenia Muscle. 2018 Oct;9(5):975-986. doi: 10.1002/jcsm.12334. Epub 2018 Sep 11.

Abstract

Background: A pharmacologic strategy for age-related muscle weakness is desired to improve mortality and disability in the elderly. Angiotensin-converting enzyme 2 (ACE2) cleaves angiotensin II into angiotensin 1-7, a peptide known to protect against acute and chronic skeletal muscle injury in rodents. Since physiological aging induces muscle weakness via mechanisms distinct from other muscle disorders, the role of ACE2-angiotensin 1-7 in age-related muscle weakness remains undetermined. Here, we investigated whether deletion of ACE2 alters the development of muscle weakness by aging and whether angiotensin 1-7 reverses muscle weakness in older mice.

Methods: After periodic measurement of grip strength and running distance in male ACE2KO and wild-type mice until 24 months of age, we infused angiotensin 1-7 or vehicle for 4 weeks, and measured grip strength, and excised tissues. Tissues were also excised from younger (3-month-old) and middle-aged (15-month-old) mice. Microarray analysis of RNA was performed using tibialis anterior (TA) muscles from middle-aged mice, and some genes were further tested using RT-PCR.

Results: Grip strength of ACE2KO mice was reduced at 6 months and was persistently lower than that of wild-type mice (p < 0.01 at 6, 12, 18, and 24-month-old). Running distance of ACE2KO mice was shorter than that of wild-type mice only at 24 months of age [371 ± 26 vs. 479 ± 24 (m), p < 0.01]. Angiotensin 1-7 improved grip strength in both types of older mice, with larger effects observed in ACE2KO mice (% increase, 3.8 ± 1.5 and 13.3 ± 3.1 in wild type and ACE2KO mice, respectively). Older, but not middle-aged ACE2KO mice had higher oxygen consumption assessed by a metabolic cage than age-matched wild-type mice. Angiotensin 1-7 infusion modestly increased oxygen consumption in older mice. There was no difference in a wheel-running activity or glucose tolerance between ACE2KO and wild-type mice and between mice with vehicle and angiotensin 1-7 infusion. Analysis of TA muscles revealed that p16INK4a, a senescence-associated gene, and central nuclei of myofibers increased in middle-aged, but not younger ACE2KO mice. p16INK4a and central nuclei increased in TA muscles of older wild-type mice, but the differences between ACE2KO and wild-type mice remained significant (p < 0.01). Angiotensin 1-7 did not alter the expression of p16INK4a or central nuclei in TA muscles of both types of mice. Muscle ACE2 expression of wild-type mice was the lowest at middle age (2.6 times lower than younger age, p < 0.05).

Conclusions: Deletion of ACE2 induced the early manifestation of muscle weakness with signatures of muscle senescence. Angiotensin 1-7 improved muscle function in older mice, supporting future application of the peptide or its analogues in the treatment of muscle weakness in the elderly population.

Keywords: ACE2; Angiotensin 1-7; Muscle weakness; p16INK4a.

MeSH terms

  • Age Factors
  • Angiotensin I / metabolism*
  • Angiotensin-Converting Enzyme 2
  • Animals
  • Biomarkers
  • Disease Models, Animal
  • Gene Expression Profiling
  • Glucose Tolerance Test
  • Mice
  • Mice, Knockout
  • Muscle Weakness / etiology*
  • Muscle Weakness / metabolism*
  • Muscle Weakness / physiopathology
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / physiopathology
  • Oxygen Consumption
  • Peptide Fragments / metabolism*
  • Peptidyl-Dipeptidase A / deficiency*
  • Physical Conditioning, Animal
  • Transcriptome

Substances

  • Biomarkers
  • Peptide Fragments
  • Angiotensin I
  • Peptidyl-Dipeptidase A
  • Ace2 protein, mouse
  • Angiotensin-Converting Enzyme 2
  • angiotensin I (1-7)