Positron emission tomography (PET) iterative 3D reconstruction is a very computational demanding task. One of the main issues of the iterative reconstruction concerns the management of the system response matrix (SRM). The SRM models the relationship between the projection and the voxel space and its memory footprint can easily exceed hundreds of GB. Moreover, in order to make the reconstruction fast enough not to hinder its practical application, the SRM must be stored in the random access memory of the workstation used for the reconstruction. This issue is normally solved by implementing efficient storage schemes and by reducing the number of redundant patterns in the SRM through symmetries. However, finding a sufficient number of symmetries is often non-trivial and is typically performed using dedicated solutions that cannot be exported to different detectors and geometries. In this paper, an automatic approach to reduce the memory footprint of a pre-computed SRM is described. The proposed approach was named symmetry search algorithm (SSA) and consists in an algorithm that searches for some of the redundant patterns present in the SRM, leading to its lossy compression. This approach was built to detect translations, reflections and coordinates swap in voxel space. Therefore, it is particularly well suited for those scanners where some of the rotational symmetries are broken, e.g. small animal scanner where the modules are arranged in a polygonal ring made of few elements, and dual head planar PET systems. In order to validate this approach, the SSA is applied to the SRM of a preclinical scanner (the IRIS PET/CT). The data acquired by the scanner were reconstructed with a dedicated maximum likelihood estimation maximization algorithm with both the uncompressed and the compressed SRMs. The results achieved show that the information lost due to the SSA compression is negligible. Compression factors up to 52 when using the SSA together with manually inserted symmetries and up to 204 when using the SSA alone, can be obtained for the IRIS SRM. These results come without significant differences in the values and in the main quality metrics of the reconstructed images, i.e. spatial resolution and noise. Although the compression factors depend on the system considered, the SSA is applicable to any SRM and therefore it can be considered a general tool to reduce the footprint of a pre-computed SRM.