Purpose: Lower respiratory tract infections (LRTIs) can cause significant morbidity and mortality and are becoming increasingly difficult to treat because of the growing prevalence of resistance to conventional antimicrobial agents. This study aimed to assess the current in vitro susceptibility of respiratory tract pathogens collected from the UK and Ireland to ceftobiprole, an advanced-generation cephalosporin, as compared with other antibiotics.
Methods: Pathogens isolated from patients with LRTIs were analyzed as part of the British Society for Antimicrobial Chemotherapy Antimicrobial Resistance Surveillance Programme during 2014-2015. Antibiotic susceptibility was evaluated using European Committee on Antimicrobial Susceptibility Testing breakpoints, including the ceftobiprole pharmacokinetic/pharmacodynamic non-species-specific breakpoint when species-specific breakpoints were not available.
Results: One thousand one hundred and sixty-eight isolates from community-onset LRTIs and 1,264 isolates from hospital-onset LRTIs were analyzed. The ceftobiprole susceptibility rate was 99.8% (428/429) for Streptococcus pneumoniae, 100% (502/502) for Haemophilus influenzae, and 99.6% (236/237) for Moraxella catarrhalis. All Staphylococcus aureus isolates, including methicillin-susceptible S. aureus (MSSA; N=181) and methicillin-resistant S. aureus (MRSA; N=35), were susceptible to ceftobiprole. Overall, ceftobiprole susceptibility was observed in 88.1% (215/244) of Escherichia coli isolates, 83.4% (156/187) of Klebsiella pneumoniae isolates and 86.7% (98/113) of Enterobacter spp. isolates.
Conclusion: Ceftobiprole had in vitro activity against all S. aureus (both MSSA and MRSA) isolates, and almost all S. pneumoniae isolates, as well as against Gram-negative bacteria associated with community-onset or hospital-onset LRTIs. Based on this analysis, ceftobiprole is a good treatment option when broad-spectrum antibiotic coverage is needed for LRTIs.
Keywords: BSAC; MIC; RTI; antibiotic; cephalosporin; resistance.