Frontotemporal dementia (FTD) is difficult to diagnose, due to its heterogeneous nature and overlap in symptoms with primary psychiatric disorders. Brain MRI for atrophy is a key biomarker but lacks sensitivity in the early stage. Morphometric MRI-based measures and machine learning techniques are a promising tool to improve diagnostic accuracy. Our aim was to review the current state of the literature using morphometric MRI to classify FTD and assess its applicability for clinical practice. A search was completed using Pubmed and PsychInfo of studies which conducted a classification of subjects with FTD from non-FTD (controls or another disorder) using morphometric MRI metrics on an individual level, using single or combined approaches. 28 relevant articles were included and systematically reviewed following PRISMA guidelines. The studies were categorized based on the type of FTD subjects included and the group(s) against which they were classified. Studies varied considerably in subject selection, MRI methodology, and classification approach, and results are highly heterogeneous. Overall many studies indicate good diagnostic accuracy, with higher performance when differentiating FTD from controls (highest result was accuracy of 100%) than other dementias (highest result was AUC of 0.874). Very few machine learning algorithms have been tested in prospective replication. In conclusion, morphometric MRI with machine learning shows potential as an early diagnostic biomarker of FTD, however studies which use rigorous methodology and validate findings in an independent real-life cohort are necessary before this method can be recommended for use clinically.
Keywords: Classification; Diagnostic biomarker; Frontotemporal dementia; MRI; Machine learning; Morphometric analysis.
Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.