Reproduction costs depend on the general life-history strategies employed by organisms for resource acquisition, the decision rules on resource allocation, and the resource availability. Although the predictability of resource availability is expected to influence the breeding strategy, the relationship between predictability and strategy has rarely been investigated at the population level. One reason is that, while the resource availability is commonly variable in space and time, their predictability is generally assumed constant. Here, we addressed the temporal variation of the breeding strategy and its associated survival cost in a hibernating population of Tamias sibiricus, in which food resources vary in their availability between years and in their predictability within years. Based on 11 years of mark-recapture data, we used multi-event modelling to investigate seasonal variations in reproduction costs of female chipmunks that breed twice a year (spring and summer). In summer, during which a large variety and quantity of resources is available (income breeding strategy), the proportion of breeding females was consistent across years and reproduction yielded no mortality cost. In contrast, in spring, the proportion of breeding females was positively correlated with the amount of resources available for hibernation (partial capital breeding strategy). Spring reproduction yielded no immediate cost, but induced a delayed mortality cost over the next winter if future unknown conditions were unfavorable. Our findings highlight complex temporal reproductive patterns in a short-lived species: not only does the modality of resource acquisition vary among seasons, but also the decision rule to breed and its associated cost.
Keywords: Capital and income breeders; Carry-over effects; Delayed survival cost of reproduction; Hibernation; Tamias sibiricus.