The aim of this study was to establish a process for deriving a chemical-specific mode of action (MOA) from chemical-agnostic adverse outcome pathway (AOPs), using inorganic arsenic (iAs) as a case study. The AOP developed for this case study are related to disruption of cellular signaling by chemicals that strongly bind to vicinal dithiols in cellular proteins, leading to disruption of inflammatory and oxidative stress signaling along with inhibition of the DNA damage responses. The proposed MOA for iAs incorporates this AOP, overlaid on a background of increasing oxidative stress and/or co-exposure to mutagenic chemicals or radiation. The most challenging aspect of developing a MOA from AOP is the incorporation of metabolism and dose-response, neither of which may be considered in the development of an AOP. The cellular responses to relatively low concentrations (below 100 parts per billion) of iAs in drinking water appear to be secondary to binding of trivalent arsenite and its trivalent metabolite, monomethyl arsenous acid to key cellular vicinal dithiols in target tissues, resulting in a co-carcinogenic MOA. The proposed AOP may also be applied to non-cancer endpoints, enabling an integrated approach to conducting a risk assessment for iAs.