Background: Breast cancer is the leading cause of mortality from cancer in women worldwide, and cancer stem-like cell (CSC) is responsible for failure treatment of breast cancer. It plays an important role in resistant disease and metastasis. CD44/CD24 and ALDH are well-accepted protein markers of breast CSC, and it was reported that distinct subtypes of breast CSC were identified by the 2 markers. It is possible that there are various kinds of breast CSC which could be identified by different markers, and CSC markers utilized at present are not enough to fully understand breast CSC. Finding out more novel CSC markers is necessary. CXCR2 is involved in breast cancer metastasis, treatment resistance, and recurrence and has positive cross-talk with known breast CSC protein markers. It can be concluded that CXCR2 is related to breast CSC, and further study is in need.
Results: In this study, we assessed expression of CXCR2 with immunohistochemistry in breast cancer tissues from 37 patients and discovered that level of CXCR2 was significantly lower in triple-negative breast cancer (TNBC) compared with non-TNBC. CXCR2 expression decreased in estrogen receptor-negative or HER2-negative breast cancer, but not progesterone receptor-negative counterparts. By immunofluorescence, we observed high coexpression rate of CXCR2 and CSC-related proteins, including NANOG and SOX2. To prove our speculation that CXCR2 was a novel CSC marker for TNBC, we used 4T1 cell, which is a TNBC cell line, to analyze CXCR2-positive subpopulations and observed that CXCR2-positive 4T1 cells showed characteristics of CSC, including resistance to cisplatinum, radiation, and hypoxia, low proportion (around 1%), much more tumor xenografts, tumor spherule formation, and higher levels of CSC-related mRNA compared with CXCR2-negative cells.
Conclusion: CXCR2 is an acceptable and newly discovered CSC marker for only TNBC.
Keywords: CXCR2; cancer stem-like cell; marker; triple-negative breast cancer.