Introduction: Effects of more than one-year exposure to air pollution on atherosclerosis is seldom studied. This paper aims to examine the association between five-year exposure to particulate matter ≤2.5 μm (PM2.5), ozone (O3) and atherosclerosis observed about seven years later in late midlife women.
Material and methods: This study was conducted among 1188 women of the Study of Women's Health Across the Nation (SWAN) from five sites, Detroit, MI; Oakland, CA; Pittsburgh, PA; Chicago, IL; and Newark, NJ, with available data on both air pollutant exposure and carotid ultrasound scans. Five-year mean annualized exposure levels of two air pollutants, PM2.5 and ozone (O3), were collected during 5 SWAN visits (1999-2005) from monitors 20 km within the participant's residential address. Linear regression models were used to estimate the association of prior five-year mean annualized exposure to PM2.5 and O3 with common carotid intima-media thickness (cIMT) and inter-adventitial diameter (IAD) examined approximately seven years later (2009-2013). Logistic and multinomial logistic regressions were applied to assess the associations of air pollutants with plaque presence and plaque index, respectively.
Results: At time of carotid ultrasound scan, women were on average 59.6 (±2.7) years old and a majority was postmenopausal (88.4%). The women were White (48.4%), Black (31.2%), Chinese (13.3%) and Hispanic (7.1%). A 1 μg/m3 higher 5-year mean annualized exposure to PM2.5 was associated with an 8.0 μm (95% CI: 1.0-15.1) greater maximum cIMT at a later mid-life, adjusting for cardiovascular disease risk factors; but was only related to IAD after adjusting for site. No association was found between either pollutant and plaque presence or plaque index.
Conclusions: Long-term exposure to PM2.5 may contribute to elevated risk of atherosclerosis in the post-menopausal period.
Keywords: Long-term exposure; Ozone (O(3)); PM(2.5); Subclinical atherosclerosis; Women's health.
Copyright © 2018 Elsevier GmbH. All rights reserved.