Background: Children born preterm, especially boys, are at increased risk of developing attention deficit hyperactivity disorder (ADHD) and learning difficulties. We propose that neurosteroid-replacement therapy with ganaxolone (GNX) following preterm birth may mitigate preterm-associated neurodevelopmental impairment.
Methods: Time-mated sows were delivered preterm (d62) or at term (d69). Male preterm pups were randomized to ganaxolone (Prem-GNX; 2.5 mg/kg subcutaneously twice daily until term equivalence), or preterm control (Prem-CON). Surviving male juvenile pups underwent behavioural testing at d25-corrected postnatal age (CPNA). Brain tissue was collected at CPNA28 and mature myelinating oligodendrocytes of the hippocampus and subcortical white matter were quantified by immunostaining of myelin basic protein (MBP).
Results: Ganaxolone treatment returned the hyperactive behavioural phenotype of preterm-born juvenile males to a term-born phenotype. Deficits in MBP immunostaining of the preterm hippocampus and subcortical white matter were also ameliorated in animals receiving ganaxolone. However, during the treatment period weight gain was poor, and pups were sedated, ultimately increasing the neonatal mortality rate.
Conclusion: Ganaxolone improved neurobehavioural outcomes in males suggesting that neonatal treatment may be an option for reducing preterm-associated neurodevelopmental impairment. However, dosing studies are required to reduce the burden of unwanted side effects.