Understanding the mechanism of iron (Fe)-deficiency responses is crucial for improving plant Fe bioavailability. Here, we found that the Arabidopsis Rho-like GTPase 6 mutant (rop6) is less sensitive to Fe-deficiency responses and has reduced levels of reactive oxygen species (ROS) compared to wild-type (WT), while AtROP6-overexpressing seedlings exhibit more sensitivity to Fe-deficiency responses and has higher levels of ROS compared to WT. Moreover, treatment with H2 O2 improves the sensitivity to Fe-deficiency responses in rop6 mutants. By using the yeast two-hybrid system, we further demonstrate the direct interaction between AtROP6 and Arabidopsis respiratory burst oxidase homolog D (AtRBOHD), which controls the generation of ROS. Overall, we suggest that AtROP6 is involved in AtRBOHD-mediated ROS signaling to modulate Fe-deficiency responses in Arabidopsis thaliana.
Keywords: AtROP6; iron deficiency; reactive oxygen species.
© 2018 Federation of European Biochemical Societies.