Many metal-organic complexes showed potent anticancer efficacy, but their clinical applications were limited by the lack of administration route because of their poor solubility. To make metal-organic nanoparticles (MONPs) comprising metal complex drugs is a new formulation strategy for their administration. Herein, we developed a facile synthesis of an MONP composed of bovine serum albumin (BSA), Cu2+, and an anticancer agent, 5-nitro-8-hydroxyquinoline (NQ) with albumin as a nanoreactor. The resultant BSA/Cu/NQ nanoparticle (BSA/Cu/NQ NP) showed good stability in different physiological buffers and could target tumors through the enhanced permeability and retention effect and receptor-mediated cellular uptake. As the BSA/Cu/NQ NP could be readily and efficiently internalized by cancer cells, it showed much higher cytotoxic cancer cells than the NQ + Cu(II) complex and NQ. Therefore, the treatment with BSA/Cu/NQ NP noticeably enhanced the anticancer efficacy without causing systemic toxicity, indicating that such a facile preparation method has great potential to prepare other metal complex nanoparticles for drug delivery.
Keywords: cancer therapy; drug delivery; metal complex drug; metal−organic nanoparticles; nitroxoline.