The involvement of gangliosides as receptors for Sendai virus was established previously using experimentally produced receptor-deficient cells. In the search for a naturally occurring counterpart, NCTC 2071 cells emerged as a likely candidate. These cells in their native state were not agglutinated nor infected by Sendai virus, but were infected by the virus when the gangliosides GD1a, GT1b, or GQ1b were supplied in the culturing medium. Preliminary analysis indicated that NCTC 2071 cells contained an unusually high ratio of sialoglycoproteins to gangliosides. A brief treatment of the cell surface with the protease trypsin made greater than 99% of the native monolayer susceptible to infection by the wild-type virus which contains the viral attachment protein HN. (Incubation of the trypsin-treated cells with a temperature-sensitive mutant missing HN produced no detectable infection.) The increased binding of cholera toxin, a ganglioside-specific probe, after incubation of the cells with trypsin and sialidase, was consistent with the hypothesis that gangliosides more complex than GM1 are on the surface of NCTC 2071 cells and that trypsin treatment increases their accessibility. The presence of receptor gangliosides in lipid extracts of NCTC 2071 cells was confirmed by thin-layer chromatography of the ganglioside fraction and by the binding of cholera toxin. These results demonstrate that cells containing receptor gangliosides may still be resistant to infection because these are not expressed properly at the cell surface as receptors for interaction with the HN protein of Sendai virus.