Selection Signatures Underlying Dramatic Male Inflorescence Transformation During Modern Hybrid Maize Breeding

Genetics. 2018 Nov;210(3):1125-1138. doi: 10.1534/genetics.118.301487. Epub 2018 Sep 26.

Abstract

Inflorescence capacity plays a crucial role in reproductive fitness in plants, and in production of hybrid crops. Maize is a monoecious species bearing separate male and female flowers (tassel and ear, respectively). The switch from open-pollinated populations of maize to hybrid-based breeding schemes in the early 20th century was accompanied by a dramatic reduction in tassel size, and the trend has continued with modern breeding over the recent decades. The goal of this study was to identify selection signatures in genes that may underlie this dramatic transformation. Using a population of 942 diverse inbred maize accessions and a nested association mapping population comprising three 200-line biparental populations, we measured 15 tassel morphological characteristics by manual and image-based methods. Genome-wide association studies identified 242 single nucleotide polymorphisms significantly associated with measured traits. We compared 41 unselected lines from the Iowa Stiff Stalk Synthetic (BSSS) population to 21 highly selected lines developed by modern commercial breeding programs, and found that tassel size and weight were reduced significantly. We assayed genetic differences between the two groups using three selection statistics: cross population extended haplotype homozogysity, cross-population composite likelihood ratio, and fixation index. All three statistics show evidence of selection at genomic regions associated with tassel morphology relative to genome-wide null distributions. These results support the tremendous effect, both phenotypic and genotypic, that selection has had on maize male inflorescence morphology.

Keywords: GWAS; inflorescence; maize; selection; tassel.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chromosome Mapping
  • Flowers / genetics*
  • Genome-Wide Association Study
  • Genotype
  • Phenotype
  • Plant Breeding*
  • Polymorphism, Single Nucleotide
  • Zea mays / genetics*

Associated data

  • figshare/10.25386/genetics.7097813