Background: The vestibular evoked myogenic potential triggered by galvanic vestibular stimulation (galvanic-VEMP) has been used to assess the function of the vestibulospinal motor tract and is a candidate biomarker to predict and monitor the human T-cell lymphotropic virus type 1 (HTLV-1) associated myelopathy (HAM). This study determined the agreement and reliability of this exam.
Methods: Galvanic-VEMP was performed in 96 participants, of which 24 patients presented HAM, 27 HTLV-1-asymptomatic carriers, and 45 HTLV-1-negative asymptomatic controls. Galvanic vestibular stimulation was achieved by passing a binaural and bipolar current at a 2 milliamperes (mA) intensity for 400 milliseconds (ms) between the mastoid processes. Galvanic-VEMP electromyographic wave responses of short latency (SL) and medium latency (ML) were recorded from the gastrocnemius muscle. Intrarater (test-retest) and interrater (two independent examiners) agreement and reliability were assessed by standard error of measurement (SEM), coefficient of repeatability (CR), intraclass correlation coefficient (ICC), and Kappa coefficient.
Results: In the total sample (n = 96), SL and ML medians were 56 ms (IQR 52-66) and 120 ms (IQR 107-130), respectively. The intrarater repeatability measures for SL and ML were, respectively: SEM of 6 and 8 ms; CR of 16 and 22 ms; ICC of 0.80 (p<0.001) and 0.91 (p<0.001); and a Kappa coefficient of 0.53 (p<0.001) and 0.82 (p<0.001). The interrater reproducibility measures for SL and ML were, respectively: SEM of 3 and 10 ms; CR of 8 and 27 ms; ICC of 0.95 (p<0.001) and 0.86 (p<0.001); and a Kappa coefficient of 0.77 (p<0.001) and 0.88 (p<0.001).
Conclusion: Galvanic-VEMP is a reliable and reproducible method to define the integrity of the vestibulospinal tract. Longitudinal studies will clarify its validity in the clinical context, aimed at achieving an early diagnosis and the monitoring of HAM.