We present an integrated view of interval timing and reinforcement learning (RL) in the brain. The computational goal of RL is to maximize future rewards, and this depends crucially on a representation of time. Different RL systems in the brain process time in distinct ways. A model-based system learns 'what happens when', employing this internal model to generate action plans, while a model-free system learns to predict reward directly from a set of temporal basis functions. We describe how these systems are subserved by a computational division of labor between several brain regions, with a focus on the basal ganglia and the hippocampus, as well as how these regions are influenced by the neuromodulator dopamine.
Copyright © 2018 Elsevier Ltd. All rights reserved.