Respiratory syncytial virus (RSV) causes serious respiratory tract infection worldwide. The relatively low RSV load makes it difficult to detect in frail, elderly, and severely immune-compromised patients. In the present study, we developed a locked nucleic acid--based 1-tube nested real-time RT-PCR (OTNRT-PCR) assay with the advantages of extremely high sensitivity, facile operability, and less likelihood of cross-contamination. The sensitivity, specificity, and clinical performance of the OTNRT-PCR assay were compared in parallel with a conventional TaqMan probe-based real-time PCR (qRT-PCR) assay and a traditional 2-step nested RT-PCR assay. The limit of detection of the OTNRT-PCR assay was 1.02 × 10-1 TCID50/mL, equivalent to the traditional 2-step nested RT-PCR assay and 25-fold lower than the qRT-PCR assay. Of 616 nasopharyngeal aspirates tested, 143 RSV-negative samples by qRT-PCR were confirmed as positive by sequencing the OTNRT-PCR products. We therefore conclude that OTNRT-PCR is more sensitive than qRT-PCR for detection of RSV in clinical samples.
Keywords: Locked nucleic acid (LNA); Melting curve analysis; One-tube nested real time RT-PCR (OTNRT-PCR); Respiratory syncytial virus (RSV); Viral detection.
Copyright © 2018 Elsevier Inc. All rights reserved.