N-Deacetylases required for muramic-δ-lactam production are involved in Clostridium difficile sporulation, germination, and heat resistance

J Biol Chem. 2018 Nov 23;293(47):18040-18054. doi: 10.1074/jbc.RA118.004273. Epub 2018 Sep 28.

Abstract

Spores are produced by many organisms as a survival mechanism activated in response to several environmental stresses. Bacterial spores are multilayered structures, one of which is a peptidoglycan layer called the cortex, containing muramic-δ-lactams that are synthesized by at least two bacterial enzymes, the muramoyl-l-alanine amidase CwlD and the N-deacetylase PdaA. This study focused on the spore cortex of Clostridium difficile, a Gram-positive, toxin-producing anaerobic bacterial pathogen that can colonize the human intestinal tract and is a leading cause of antibiotic-associated diarrhea. Using ultra-HPLC coupled with high-resolution MS, here we found that the spore cortex of the C. difficile 630Δerm strain differs from that of Bacillus subtilis Among these differences, the muramic-δ-lactams represented only 24% in C. difficile, compared with 50% in B. subtilis CD630_14300 and CD630_27190 were identified as genes encoding the C. difficile N-deacetylases PdaA1 and PdaA2, required for muramic-δ-lactam synthesis. In a pdaA1 mutant, only 0.4% of all muropeptides carried a muramic-δ-lactam modification, and muramic-δ-lactams were absent in the cortex of a pdaA1-pdaA2 double mutant. Of note, the pdaA1 mutant exhibited decreased sporulation, altered germination, decreased heat resistance, and delayed virulence in a hamster infection model. These results suggest a much greater role for muramic-δ-lactams in C. difficile than in other bacteria, including B. subtilis In summary, the spore cortex of C. difficile contains lower levels of muramic-δ-lactams than that of B. subtilis, and PdaA1 is the major N-deacetylase for muramic-δ-lactam biosynthesis in C. difficile, contributing to sporulation, heat resistance, and virulence.

Keywords: Clostridium difficile; Gram-positive bacteria; N-deacetylase; acetylation; bacteria; bacterial pathogenesis; germination; infectious disease; microbiology; muramic-δ-lactams; peptidoglycan; spore cortex; sporulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amidohydrolases / genetics
  • Amidohydrolases / metabolism*
  • Animals
  • Bacillus subtilis / enzymology
  • Bacillus subtilis / genetics
  • Bacillus subtilis / metabolism
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Clostridioides difficile / chemistry
  • Clostridioides difficile / enzymology*
  • Clostridioides difficile / genetics
  • Clostridioides difficile / growth & development
  • Clostridium Infections / microbiology
  • Cricetinae
  • Female
  • Hot Temperature
  • Humans
  • Lactams / metabolism*
  • Mesocricetus
  • Muramic Acids / metabolism*
  • Spores, Bacterial / chemistry
  • Spores, Bacterial / enzymology
  • Spores, Bacterial / growth & development*

Substances

  • Bacterial Proteins
  • Lactams
  • Muramic Acids
  • muramic lactam
  • Amidohydrolases
  • amidase