Large-scale 3-D interconnected Ni nanotube networks with controlled structural and magnetic properties

Sci Rep. 2018 Sep 28;8(1):14555. doi: 10.1038/s41598-018-32437-8.

Abstract

Large-scale, electrically interconnected three-dimensional (3-D) Ni crossed nanotube networks have been fabricated using an electrochemical dealloying method within the crossed nanopores of polymer host membranes. This method paves the way for the easy and cost-effective fabrication of 3-D magnetic NT networks with precise spatial arrangement and diameter and wall thickness of 10-100 nm controlled individually. The excellent control over geometrical parameters and morphological features of the Ni crossed nanotube networks leads to tunable magnetic and magneto-transport properties. Particularly, the low field magneto-transport behavior is consistent with the expected vortex-like states formed in different segments of the nanotube scaffold, whereas nucleation of domain walls at the intersection of the nanowire segments play a dominant role in the solid crossed nanowire networks counterpart. The present 3-D networks of nanomagnets are of special interest due to their potential for memory devices, computing architectures, sensing and biomedical applications.

Publication types

  • Research Support, Non-U.S. Gov't