The aim of this study was to evaluate the involvement of both B1 and B2 kinins receptors (B1R and B2R) in the fibroblast proliferation induced by the cytokine tumour necrosis factor (TNF) attempting to establish an in vitro model of wound healing. Murine fibroblasts L-929 were cultivated in 24 wells plaque until total confluence (DMEM (Vitrocell®); 5% fetal bovine serum, 5% CO2, 37 °C) and then submitted to the scratch assay. The cells were treated with PBS, TNF (2 ng/mL) and/or mr-TNF antibody (200 μg/mL), or PDTC. The cells received the second set of treatment (3 h later): PBS; 1 μM HOE-140; 1 μM des-Arg9-Leu8-BK (DALBK) or 100 μM PDTC. TNF was able to increase the cell proliferation when compared with the group treated with PBS. The co-treatment with the TNF antibody completely reversed the TNF effect. The TNF-proliferative effect was blocked by B1 (DALBK) and B2 (HOE-140) kinin receptor antagonists administered separately or along, suggesting the involvement of both receptors in the TNF mechanism of action. Furthermore, the treatment with a NF-ĸB inhibitor PDTC completely blocked the cell proliferation. The TNF cell proliferation was incremented with BK (1 μM) treatment, and its effect was totally reversed by HOE-140 treatment. No effect was observed for TNF plus DABK. Eventually, TNF treatment was able to increase TNF level in the growing medium; however, this increase was suppressed by BK treatment. These results suggest that TNF induces cell proliferation and the induced signalling cascade has the B2R participation. All these events seem to be totally dependent on the NF-ĸB activation. These inflammatory mediators can improve the wound healing in the resolution of inflammation.
Keywords: Bradykinin; Cytokines; Kinins; Tissue repair; Wound healing.
Copyright © 2018 Elsevier B.V. All rights reserved.