Background: The adequacy of the World Health Organization's Integrated Management of Childhood Illness (IMCI) antimicrobial guidelines for the treatment of suspected severe bacterial infections is dependent on a low prevalence of antimicrobial resistance (AMR). We describe trends in etiologies and susceptibility patterns of bloodstream infections (BSI) in hospitalized children in Malawi.
Methods: We determined the change in the population-based incidence of BSI in children admitted to Queen Elizabeth Central Hospital, Blantyre, Malawi (1998-2017). AMR profiles were assessed by the disc diffusion method, and trends over time were evaluated.
Results: A total 89643 pediatric blood cultures were performed, and 10621 pathogens were included in the analysis. Estimated minimum incidence rates of BSI for those ≤5 years of age fell from a peak of 11.4 per 1000 persons in 2002 to 3.4 per 1000 persons in 2017. Over 2 decades, the resistance of Gram-negative pathogens to all empiric, first-line antimicrobials (ampicillin/penicillin, gentamicin, ceftriaxone) among children ≤5 years increased from 3.4% to 30.2% (P < .001). Among those ≤60 days, AMR to all first-line antimicrobials increased from 7.0% to 67.7% (P < .001). Among children ≤5 years, Klebsiella spp. resistance to all first-line antimicrobial regimens increased from 5.9% to 93.7% (P < .001).
Conclusions: The incidence of BSI among hospitalized children has decreased substantially over the last 20 years, although gains have been offset by increases in Gram-negative pathogens' resistance to all empiric first-line antimicrobials. There is an urgent need to address the broader challenge of adapting IMCI guidelines to the local setting in the face of rapidly-expanding AMR in childhood BSI.
Keywords: Gram negative; antimicrobial resistance; neonatal; pediatric; sepsis.
© The Author(s) 2018. Published by Oxford University Press for the Infectious Diseases Society of America.