Applied Genetic Technologies Corporation (AGTC) is developing a recombinant adeno-associated virus (rAAV) vector AGTC-501, also designated AAV2tYF-GRK1-RPGRco, to treat retinitis pigmentosa (RP) in patients with mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. The vector contains a codon-optimized human RPGR cDNA (RPGRco) driven by a photoreceptor-specific promoter (G protein-coupled receptor kinase 1, GRK1) and is packaged in an AAV2 capsid with three surface tyrosine residues changed to phenylalanine (AAV2tYF). We conducted a safety and potency study of this vector administered by subretinal a injection in the naturally occurring RPGR-deficient Rd9 mouse model. Sixty Rd9 mice (20 per group) received a subretinal injection in the right eye of vehicle (control) or AAV2tYF-GRK1-RPGRco at one of two dose levels (4 × 108 or 4 × 109 vg/eye) and were followed for 12 weeks after injection. Vector injections were well tolerated, with no systemic toxicity. There was a trend towards reduced electroretinography b-wave amplitudes in the high vector dose group that was not statistically significant. There were no clinically important changes in hematology or clinical chemistry parameters and no vector-related ocular changes in life or by histological examination. Dose-dependent RPGR protein expression, mainly in the inner segment of photoreceptors and the adjacent connecting cilium region, was observed in all vector-treated eyes examined. Sequence integrity of the codon-optimized RPGR was confirmed by sequencing of PCR-amplified DNA, or cDNA reverse transcribed from total RNA extracted from vector-treated retinal tissues, and by sequencing of RPGR protein obtained from transfected HEK 293 cells. These results support the use of rAAV2tYF-GRK1-RPGRco in clinical studies in patients with XLRP caused by RPGR mutations.
Keywords: AAV; RPGR; XLRP; gene therapy; retinitis pigmentosa.