GammaKnife versus VMAT radiosurgery plan quality for many brain metastases

J Appl Clin Med Phys. 2018 Nov;19(6):159-165. doi: 10.1002/acm2.12471. Epub 2018 Oct 4.

Abstract

The purpose of this work was to compare dose distributions between two radiosurgery modalities, single-isocenter volumetric modulated arc therapy (VMAT), and GammaKnife Perfexion (GK), in the treatment of a large number (≥7) of brain metastases. Twelve patients with 103 brain metastases were analyzed. The median number of targets per patient was 8 (range: 7-14). GK plans were compared to noncoplanar VMAT plans using both 6-MV flattening filter-free (FFF) and 10-MV FFF modes. Parameters analyzed included radiation therapy oncology group conformity index (CI), 12, 6, and 3 Gy isodose volumes (V12 Gy, V6 Gy, V3 Gy), mean and maximum hippocampal dose, and maximum skin dose. There were statistically significant differences in CI (2.5 ± 1.6 vs 1.6 ± 0.8 and 1.7 ± 0.9, P < 0.001, P < 0.001), V12 Gy (2.8 ± 6.1 cc vs 3.0 ± 5.2 cc and 3.1 ± 5.4 cc, P = 0.003, P < 0.001), and V3 Gy (323.0 ± 294.8 cc vs, 880.1 ± 369.1 cc and 937.9 ± vs 361.9 cc, P = 0.005, P = 0.001) between GK versus both 6-MV FFF and 10-MV FFF. No significant differences existed for maximum hippocampal or skin doses. In conclusion, highly optimized VMAT produced improved conformity at the expense of a higher V12 Gy and V3 Gy volume when compared with highly optimized GK.

Keywords: VMAT; GammaKnife; brain radiosurgery; metastases.

Publication types

  • Comparative Study

MeSH terms

  • Brain Neoplasms / secondary*
  • Brain Neoplasms / surgery*
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Prognosis
  • Quality Assurance, Health Care / standards*
  • Radiometry / methods
  • Radiosurgery / instrumentation*
  • Radiosurgery / methods*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted / methods
  • Radiotherapy Planning, Computer-Assisted / standards*
  • Radiotherapy, Intensity-Modulated / methods*