Leptin acts on hypothalamic pro-opiomelanocortin (POMC) neurons to regulate glucose homeostasis, but the precise mechanisms remain unclear. Here, we demonstrate that leptin-induced depolarization of POMC neurons is associated with the augmentation of a voltage-gated calcium (CaV) conductance with the properties of the "R-type" channel. Knockdown of the pore-forming subunit of the R-type (CaV2.3 or Cacna1e) conductance in hypothalamic POMC neurons prevented sustained leptin-induced depolarization. In vivo POMC-specific Cacna1e knockdown increased hepatic glucose production and insulin resistance, while body weight, feeding, or leptin-induced suppression of food intake were not changed. These findings link Cacna1e function to leptin-mediated POMC neuron excitability and glucose homeostasis and may provide a target for the treatment of diabetes.
Keywords: POMC neuron; calcium channel; diabetes; glucose; hypothalamus; insulin resistance; leptin; liver.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.