Multiple signaling molecules and transcription factors are required for pituitary development. Activator-type bHLH genes Mash1, Math, NeuroD (Neurod) and Neurogenin (Neurog) are well known as key molecules in neural development. Although analyses of targeted mouse mutants have demonstrated involvement of these bHLH genes in pituitary development, studies with single-mutant mice could not elucidate their exact functions, because they cooperatively function and compensate each other. The aim of this study was to elucidate the roles of Mash1, Math3 and NeuroD in pituitary development. Mash1;Math3;NeuroD triple-mutant mice were analyzed by immunohistochemistry and quantitative real-time RT-PCR. Misexpression studies with retroviruses in pituisphere cultures were also performed. The triple-mutant adenohypophysis was morphologically normal, though the lumen of the neurohypophysis remained unclosed. However, in triple-mutant pituitaries, somatotropes, gonadotropes and corticotropes were severely decreased, whereas lactotropes were increased. Misexpression of Mash1 alone with retrovirus could not induce generation of hormonal cells, though Mash1 was involved in differentiation of pituitary progenitor cells. These data suggest that Mash1, Math3 and NeuroD cooperatively control the timing of pituitary progenitor cell differentiation and that they are also required for subtype specification of pituitary hormonal cells. Mash1 is necessary for corticotroph and gonadotroph differentiation, and compensated by Math3 and NeuroD. Math3 is necessary for somatotroph differentiation, and compensated by Mash1 and NeuroD. Neurog2 may compensate Mash1, Math3 and NeuroD during pituitary development. Furthermore, Mash1, Math3 and NeuroD are required for neurohypophysis development. Thus, Mash1, Math3 and NeuroD are required for pituitary development, and compensate each other.
Keywords: Mash1; Math3; NeuroD; pituitary development.
© 2018 Society for Endocrinology