During exocytosis, vesicles fuse with the plasma membrane and release their contents. The fusion pore is the initial, nanometer-sized connection between the plasma membrane and the cargo-laden vesicle. A growing body of evidence points toward the fusion pore being a regulator of exocytosis, but the shortcomings of current experimental techniques to investigate single-fusion pores make it difficult to study factors governing pore behavior. Here we describe an assay that fuses v-SNARE-reconstituted nanodiscs with cells ectopically expressing "flipped" t-SNAREs to monitor dynamics of single fusion pores in a biochemically defined system using electrical recordings. We also describe a fluorescence microscopy-based approach to monitor nanodisc-cell fusion that is much simpler to employ, but cannot resolve single pores.
Keywords: Electrophysiology; Exocytosis; Fusion pore; Membrane fusion; Nanodisc; SNAREs.