Nowadays, among the main causes of blindness in developed countries are age-related macular degeneration (AMD) and the diabetic macular edema (DME). Both diseases present, as a common symptom, the appearance of cystoid fluid regions inside the retinal layers. Optical coherence tomography (OCT) image modality was one of the main medical imaging techniques for the early diagnosis and monitoring of AMD and DME via this intraretinal fluid detection and characterization. We present a novel methodology to identify these fluid accumulations by means of generating binary maps (offering a direct representation of these areas) and heat maps (containing the region confidence). To achieve this, a set of 312 intensity and texture-based features were studied. The most relevant features were selected using the sequential forward selection (SFS) strategy and tested with three archetypal classifiers: LDC, SVM and Parzen window. Finally, the most proficient classifier is used to create the proposed maps. All of the tested classifiers returned satisfactory results, the best classifier achieving a mean test accuracy higher than 94% in all of the experiments. The suitability of the maps was evaluated in a context of a screening issue with three different datasets obtained with two different devices, testing the capabilities of the system to work independently of the used OCT device. The experiments with the map creation were performed using 323 OCT images. Using only the binary maps, more than 91.33% of the images were correctly classified. With only the heat maps, the proposed methodology correctly separated 93.50% of the images.