It was previously reported that the expression of CD274 was down-regulated in psoriatic epidermis, leading to immune disorders of psoriasis. However, the regulatory mechanisms of CD274 were rarely elucidated. We aimed to explore the regulatory mechanisms of CD274. Skin samples were collected from 18 patients with psoriasis vulgaris and 9 healthy participants for RNA sequencing. Candidate genes were chosen based on degree and k-core difference of genes in the co-expression network. The relations between candidate genes and CD274 were validated by flow cytometry and real-time PCR in primary human epidermal keratinocytes. The therapeutic effect of indirubin was assessed in an imiquimod-treated mouse model. Interferon-γ (IFN-γ), cyclin-dependent kinase (CDK) 1, Toll-like receptor 3 (TLR3), TLR4 and interleukin (IL)-17A were considered as candidate genes. In primary human epidermal keratinocytes, the level of CD274 was obviously increased under the stimulation of IFN-γ and CDK1 inhibitor (indirubin), independent of TLR4, TLR3 or IL-17A. Indirubin alleviated the severity of psoriatic mice in a CD274-dependent manner. Co-expression network analysis served as an effective method for the exploration of molecular mechanisms. We demonstrated for the first time that CD274 was the regulator of indirubin-mediated effect on mouse psoriasis-like skin lesion based on co-expression network analysis, contributing to the alleviation of mouse psoriasis-like skin lesion.
Keywords: IFN-γ; PD-L1; RNA sequencing; differentially expressed genes; indirubin; psoriasis.
© 2018 The Author(s).