In the present work, novel bacterial cellulose (BC) and chitosan (CS) semi-interpenetrating network (semi-IPN) hydrogels were prepared via blending the slurry of BC with CS solution followed by cross-linking with glutaraldehyde. The structure and properties of BC-CS hydrogels were characterized by different techniques including; FTIR, XRD, FE-SEM, TGA and rotational rheometry. The results indicated cross-linking of chitosan chains by glutaraldehyde while BC was physically connected to network forming semi-IPN hydrogels. Microscopic study of cross-sectional freeze-dried hydrogels showed microporous openings. BC-CS hydrogels exhibited higher thermal stability than pure BC film or CS hydrogel alone. The rheological results presented significant mechanical properties of semi-IPN hydrogels. Moreover, the hydrogels showed antibacterial properties against tested Gram-positive and Gram-negative bacteria. The antibacterial properties were dependent on the ratio of BC to CS. Hydrogels with 20% BC to CS reduced the viable colonies by ~88%. The development of this new class of BC-CS antibacterial, mechanically strong and stable soft-material could be a promising candidate for antibacterial applications.
Keywords: Antibacterial activity; Bacterial cellulose; Chitosan; Semi-IPN hydrogels.
Copyright © 2018. Published by Elsevier B.V.