Osteosarcoma (OS) is a common, malignant musculoskeletal tumor in young people. Neoadjuvant chemotherapy has improved the survival of osteosarcoma patients but with limited benefit due to metastasis. Tumor-associated macrophages (TAMs) are involved in various mechanisms of tumor biology, which include oncogenesis, drug resistance, and tumor immune escape, as well as tumor metastasis. In this study, we proved that TAMs possess the ability to promote OS cell migration and invasion by upregulating COX-2, MMP9, and phosphorylated STAT3 and to induce the epithelial-mesenchymal transition (EMT). This evidence has also been verified in a tumor-bearing animal model, and in OS patients. Furthermore, we observed the anti-metastasis effect of COX-2 inhibition by repressing COX-2 expression, EMT-activating transcription factors and the STAT3 pathway, both in vitro and in vivo. We propose that TAMs promote OS metastasis and invasion by activating the COX-2/STAT3 axis and EMT. These findings suggest that TAMs and COX-2 may be potential targets for future anti-metastasis therapy.
Keywords: Aspirin; COX-2; Lung metastasis; TAMs.
Copyright © 2018 Elsevier B.V. All rights reserved.