Synthesis and Structure Determination of µ-Conotoxin PIIIA Isomers with Different Disulfide Connectivities

J Vis Exp. 2018 Oct 2:(140):58368. doi: 10.3791/58368.

Abstract

Peptides with a high number of cysteines are usually influenced regarding the three-dimensional structure by their disulfide connectivity. It is thus highly important to avoid undesired disulfide bond formation during peptide synthesis, because it may result in a completely different peptide structure, and consequently altered bioactivity. However, the correct formation of multiple disulfide bonds in a peptide is difficult to obtain by using standard self-folding methods such as conventional buffer oxidation protocols, because several disulfide connectivities can be formed. This protocol represents an advanced strategy required for the targeted synthesis of multiple disulfide-bridged peptides which cannot be synthesized via buffer oxidation in high quality and quantity. The study demonstrates the application of a distinct protecting group strategy for the synthesis of all possible 3-disulfide-bonded peptide isomers of µ-conotoxin PIIIA in a targeted way. The peptides are prepared by Fmoc-based solid phase peptide synthesis using a protecting group strategy for defined disulfide bond formation. The respective pairs of cysteines are protected with trityl (Trt), acetamidomethyl (Acm), and tert-butyl (tBu) protecting groups to make sure that during every oxidation step only the required cysteines are deprotected and linked. In addition to the targeted synthesis, a combination of several analytical methods is used to clarify the correct folding and generation of the desired peptide structures. The comparison of the different 3-disulfide-bonded isomers indicates the importance of accurate determination and knowledge of the disulfide connectivity for the calculation of the three-dimensional structure and for interpretation of the biological activity of the peptide isomers. The analytical characterization includes the exact disulfide bond elucidation via tandem mass spectrometry (MS/MS) analysis which is performed with partially reduced and alkylated derivatives of the intact peptide isomer produced by an adapted protocol. Furthermore, the peptide structures are determined using 2D nuclear magnetic resonance (NMR) experiments and the knowledge obtained from MS/MS analysis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Conotoxins / chemical synthesis*
  • Conotoxins / chemistry*
  • Disulfides / chemistry*
  • Isomerism*

Substances

  • Conotoxins
  • Disulfides